01.07.201401.07.2014 Мина

У нас вы можете скачать гост 3730 47 в fb2, txt, PDF, EPUB, doc, rtf, jar, djvu, lrf!

Наши клиенты защищены Законом. Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов. Ограждение муфт на месте их эксплуатации обязательно. Завод-поставщик обязан в течение 12 месяцев со дня отгрузки потребителю безвозмездно заменять или ремонтировать вышедшие из строя муфты при условии правильного их выбора и соблюдения потребителем правил их эксплуатации и хранения.

Готовые зубчатые муфты должны быть приняты отделом технического контроля завода-поставщика. В случае несоответствия результатов какой-либо проверки требованиям настоящего стандарта, проводят повторную проверку удвоенного количества образцов. Муфты должны быть упакованы в ящики или решетки. Каждая муфта должна сопровождаться документом, удостоверяющим соответствие ее требованиям настоящего стандарта и включающим:. Муфты должны храниться в закрытом помещении или под навесом при соблюдении правил консервации.

Настоящий стандарт распространяется на зубчатые муфты общего назначения с центрированием обойм по сферической поверхности выступов зубьев втулок, применяемые для соединения горизонтальных соосных валов, передающих крутящие моменты в пределах от 71 до кГм. Тип М3—муфты для непосредственного соединения валов, состоящие из двух зубчатых втулок и обойм черт. Типо-размеры муфт и их основные параметры должны соответствовать черт. В муфтах обоих типов допускается применение различных втулок, указанных на черт.

При применении материалов с более высокими механическими свойствами значения крутящего момента могут быть увеличены до пределов, устанавливаемых расчетным путем. Конусность поверхности обоймы с диаметром 0j a должна быть в пределах допуска на 0;,. При использовании комплексного калибра проверка предельной накопленной погрешности окружного шага и нижнего отклонения размера 0; нс производится. Материал для изготовления втулок и обойм должен быть не ниже:. Для обеспечения правильной сборки муфт на соединяемых между собой обоймах, а также на полумуфтах в муфтах типа МЗГ1 должны быть нанесены контрольные метки.

ГОСТ Муфты зубчатые общего назначения. Способы доставки Срочная курьерская доставка дня Курьерская доставка 7 дней Самовывоз из московского офиса Почта РФ. Внутренние необработанные поверхности муфт должны быть окрашены маслостойкой краской. Размер каждой партии должен устанавливаться соглашением сторон.

Настоящий стандарт предусматривает одновременное ограничение нагрузочной способности кратковременными и длительными воздействиями. Таблицы и графики, приведенные в стандарте, основаны на традиционных методах расчета предполагаемой долговечности бумажной изоляции по механическим свойствам в зависимости от времени и температуры, в то время как ограничения предельных температур наиболее нагретой точки устанавливаются ввиду опасности немедленного отказа.

Чувствительность трансформатора к нагрузкам выше номинальных обычно зависит от мощности. С увеличением мощности трансформатора наблюдается следующее:. Таким образом, трансформаторы большой мощности могут быть менее устойчивыми к перегрузкам, чем трансформаторы меньшей мощности.

Кроме того, выход из строя мощных трансформаторов влечет за собой более тяжелые последствия, чем отказ трансформаторов малой мощности. С целью сохранения возможно меньшей степени риска при ожидаемых перегрузках в настоящем стандарте рассматриваются три категории трансформаторов:. При нагрузке, превышающей номинальную, рекомендуется не превышать предельные значения, приведенные в таблице 1 и учитывать специальные ограничения, приведенные в 1. Таблица 1 - Предельные значения температуры и тока для режимов нагрузки, превышающей номинальную.

В настоящем пункте рассматриваются распределительные трансформаторы мощностью не более кВ-А, определение которых приведено в 1. Не следует превышать приведенные в таблице 1 предельные значения тока нагрузки, температуры наиболее нагретой точки обмоток и температуры масла в верхних слоях. Для режимов кратковременных аварийных перегрузок предельные значения температуры масла в верхних слоях и наиболее нагретой точки не установлены, так как на практике невозможно контролировать продолжительность аварийной перегрузки распределительных трансформаторов.

Работа трансформатора в режиме нагрузки, превышающей 1,5 номинального тока, помимо обмоток может ограничиваться некоторыми другими частями трансформатора, такими как вводы, концевые кабельные соединения, устройства переключения ответвлений обмоток и соединения.

Причиной ограничения работы трансформатора может быть также расширение и давление масла. Допустимые перегрузки, рассчитанные для обмоток, не должны ограничиваться нагрузочными характеристиками комплектующих трансформатор изделий. Если трансформаторы предназначены для внутренней установки, необходимо к значению номинального превышения температуры масла в верхних слоях внести поправку на окружающую среду.

Такое дополнительное увеличение превышения температуры следует определять в основном при испытаниях трансформаторов см. Ветер, солнце и дождь могут в определенной степени влиять на нагрузочную способность распределительных трансформаторов, но поскольку воздействие этих факторов нерегулярно, учитывать их нецелесообразно. В настоящем пункте рассматриваются трехфазные трансформаторы номинальной мощностью не более MB-А, на которые распространяются ограничения по сопротивлению короткого замыкания, приведенные в 1.

Не следует превышать приведенные в таблице 1 предельные значения тока нагрузки, температуры наиболее нагретой точки обмоток, температуры масла в верхних слоях и температуры металлических частей, соприкасающихся с изоляционным материалом. Кроме обмоток, работа трансформатора в режиме нагрузки, превышающей 1,5 номинального тока, может ограничиваться также возможностями других частей трансформатора, таких как вводы, концевые кабельные соединения, устройства переключения ответвлений и соединения.

Следует учитывать и характеристики такого присоединенного оборудования, как кабели, выключатели, трансформаторы тока и т. Во время работы в условиях нагрузки, превышающей номинальную, или непосредственно после такой работы трансформаторы могут не удовлетворять требованиям ГОСТ к термической стойкости при коротком замыкании, допускающем длительность токов короткого замыкания 2с. Однако в большинстве случаев в условиях эксплуатации длительность тока короткого замыкания меньше 2с.

Если нет других ограничений для регулирования напряжения с изменяемым потоком ГОСТ , то прикладываемое напряжение не должно превышать 1,05 номинального напряжения основное ответвление или напряжения ответвления другие ответвления на любой обмотке трансформатора.

Для трансформаторов большой мощности следует учитывать дополнительные ограничения, связанные, в основном, с сильными потоками рассеяния. В связи с этим целесообразно указывать при заказе трансформатора или по запросу нагрузочную способность трансформаторов специального назначения см. Метод расчета термического износа изоляции для всех трансформаторов одинаков. Однако рекомендуется выполнять машинный расчет по фактическим тепловым характеристикам каждого индивидуально рассматриваемого трансформатора, а не использовать данные таблиц допустимых нагрузок, приведенных в разделе 3.

Существующий уровень знаний, требования высокой надежности трансформаторов большой мощности, связанные с последствиями их повреждения, а также приведенные ниже положения обуславливают более консервативный и более индивидуальный подход к рекомендациям для этих трансформаторов, чем для трансформаторов меньшей мощности:.

Даже если при таком испытании номинальным током не появляется никаких отклонений от нормы, сделать заключение о последствиях при более высоких токах нельзя, эта экстраполяция не учитывается при конструировании трансформаторов;. Наиболее значительным ограничением перегрузки трансформатора является температура наиболее нагретой точки обмотки: В настоящее время начинают постепенно выполнять непосредственное ее измерение оптическими волоконными светопроводами с датчиками или другими приборами аналогичного назначения.

Такие измерения должны улучшить оценку температуры наиболее нагретой точки по сравнению с методами расчета, приведенными в п. Следует иметь в виду, что формулы, приведенные в настоящем стандарте, основаны на ряде упрощений. Приведенная на рисунке 1 схема распределения температуры является упрощением более сложной действительной картины распределения температуры.

Итак, приняты следующие упрощения:. Для учета этих нелинейностей за разность температур наиболее нагретой точки и масла в верхней части обмотки принято обозначение Нg. Коэффициент Н может иметь значения от 1,1 до 1,5 в зависимости от мощности трансформатора, сопротивления короткого замыкания и конструкции обмотки.

При построении графиков и составлении таблиц раздела 3 настоящего стандарта для распределительных трансформаторов использовано значение 1,1, для трансформаторов средней и большой мощности - 1,3.

Эта разность особенно заметна в течение неустановившегося режима в результате внезапного появления нагрузки большой амплитуды. Фактически масло в верхних слоях представляет собой смесь различных потоков масла, которые циркулируют вдоль и или снаружи разных обмоток. Разность между главными обмотками при охлаждении ON обычно незначительна.

Для любой обмотки за температуру масла на выходе из обмотки принимается температура смеси масла в верхней части бака. За температуру масла на выходе из обмотки при видах охлаждения OF и OD принимается температура масла в нижней части обмоток плюс удвоенная разность средней температуры масла в средней части рассматриваемой обмотки и температуры масла в нижней части обмотки. В силу различий в распределении потоков масла разные виды охлаждений следует рассматривать отдельно.

Предполагается, что в трансформаторах с охлаждением ОN и OF циркуляция масла в обмотке осуществляется термосифоном, а в трансформаторах с охлаждением OD - в основном насосом и практически не зависит от градиента температуры масла. В настоящем стандарте использован в основном альтернативный метод см. Продолжительность самой кратковременной перегрузки по таблицам допустимых нагрузок настоящего стандарта равна 30 мин раздел 3 ; при расчетах значение тепловой постоянной времени принимают равным нулю.

В таблице 2 приведены тепловые характеристики, которые использовались при составлении таблиц допустимых нагрузок раздела 3 настоящего стандарта. Таблица 2 Тепловые характеристики, используемые при составлении таблиц нагрузок раздела 3.

Для вида охлаждения ON максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в верхних слоях и разности температур наиболее нагретой точки и масла в верхних слоях. Для вида охлаждения OF метод расчета основан на температуре масла в нижней и средней частях обмотки и средней температуре масла, как указано в 2. Таким образом, максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в нижней части обмотки, разности температур масла на выходе из обмотки и в нижней части, а также разности температур наиболее нагретой точки и масла на выходе из обмотки.

Для вида охлаждения OD метод расчета, в основном, такой же, как и для вида охлаждения OF, за исключением того, что к значению , добавляется поправка на изменение омического сопротивления обмоток от температуры. Для получения более точных результатов следует обращаться за консультацией к изготовителю. При расчете максимальной температуры наиболее нагретой точки по приведенным выше формулам теоретически возможно вводить различные поправки, например, на изменение в зависимости от температуры:.

Для видов охлаждения ON и OF изменение вязкости при изменении температуры компенсируется изменением сопротивления обмоток. В настоящем стандарте эти два явления не принимаются во внимание. Для вида охлаждения OD влияние вязкости масла на превышение температуры незначительно. Следует учитывать изменение омического сопротивления, например, введением поправки в формулу 3. Любое изменение режимов нагрузки рассматривается как ступенчатая функция. Прямоугольный график нагрузки, используемый при составлении таблиц раздела 3 настоящего стандарта, состоит из одной ступени, направленной вверх, и через некоторое время одной ступени, направленной вниз.

Для непрерывно изменяющейся нагрузки ступенчатая функция применяется к меньшим интервалам времени, а для расчета температуры наиболее нагретой точки требуется программа машинного расчета см.

Превышение температуры масла например, в нижней части в конце интервала времени t определяют по формуле. При любом изменении нагрузки разность температур обмотки и масла изменяется и достигает нового значения с характерной постоянной времени обмотки.

В соответствии с причинами, приведенными в 2. Принимается, что значение коэффициента нагрузки Кy в последнем выражении формулы 1 и двух последних выражениях формулы 2 мгновенно достигает нового значения. Кроме всех других воздействий, которыми можно было бы пренебречь, изоляция подвергается термохимическому износу.

Этот процесс является кумулятивным и приводит к недопустимому ее состоянию по некоторым критериям. Согласно закону Аррениуса, период времени до достижения этого состояния в зависимости от скорости химической реакции выражается формулой.

Для ограничения диапазона температуры можно пользоваться более простым экспоненциальным отношением Монтсингер. В настоящем стандарте используется отношение Монтсингер, которое, по приведенному выше определению, является упрощением основного, используемого в других руководствах по нагрузке, закона Аррениуса относительно термохимического износа.

Для рассматриваемого в настоящем стандарте диапазона температур использование отношения Монтсингер считается достаточным и, в сущности, дает оценку термического износа с запасом прочности.

Пока не существует единственного и простого критерия окончания срока службы, который мог бы быть использован для количественной оценки полезного срока службы изоляции трансформатора, однако можно сделать сравнения, основанные на скорости износа изоляции. Это величина, обратная сроку службы, выражаемая отношением Монтсингер. Значение постоянной в этом уравнении зависит от многих факторов: Скорость износа определяется температурой наиболее нагретой точки.

В настоящем стандарте относительная скорость износа при этой температуре принимается равной единице. Во многих трансформаторах применяется термически высококачественная изоляция. Поскольку в ГОСТ Относительная скорость износа определяется по формуле. Из данных, приведенных ниже, следует, что эта формула содержит значительную зависимость относительной скорости износа изоляции от температуры наиболее нагретой точки:.

Если нагрузка и температура охлаждающей среды постоянны в течение определенного периода времени, то относительное сокращение срока службы равно Vt, где t - рассматриваемый период времени. То же самое относится к постоянному режиму нагрузки при изменяющейся температуре охлаждающей среды, если при этом используется базовое значение температуры охлаждающей среды см. Обычно, когда изменяется режим нагрузки и температура охлаждающей среды, относительная скорость сокращения срока службы изменяется во времени.

Относительный износ изоляции или относительное сокращение срока службы в течение определенного периода времени составит. Для трансформаторов наружной установки с воздушным охлаждением за температуру охлаждающей среды принимается действительная температура воздуха.

Для распределительных трансформаторов внутренней установки поправка на температуру охлаждающей среды приведена в 2. Для трансформаторов с водяным охлаждением за температуру охлаждающей среды принимается температура воды на входе в теплообменник, которая во времени изменяется меньше, чем температура воздуха. При перегрузке продолжительностью более нескольких часов следует учитывать изменение температуры охлаждающей среды.

По желанию потребителя эти изменения можно учитывать при помощи одного из следующих методов:. Если температура охлаждающей среды заметно изменяется при перегрузках, в тепловом расчете следует использовать ее эквивалентное значение, так как оно будет больше среднеарифметического значения. Эквивалентная температура охлаждающей среды - это условно постоянная температура, которая в течение рассматриваемого периода времени вызывает такой же износ изоляции, как и изменяющаяся температура охлаждающей среды за такой же промежуток времени сутки, месяц или год.

Поправочный коэффициент на среднюю температуру может быть также определен по кривой, изображенной на рисунке 2, который является иллюстрацией приведенной выше формулы. Рисунок 2 - Поправка на среднюю температуру для получения эквивалентной температуры. Эквивалентная температура охлаждающей среды может быть использована для расчета термического износа изоляции, но не может быть использована для контроля максимальной температуры наиболее нагретой точки в период перегрузки.

Для такого контроля рекомендуется принимать среднее значение месячных максимумов. Использование абсолютного максимума не считается целесообразным вследствие малой вероятности его появления и влияния тепловой постоянной времени.

Если расчеты износа изоляции и температуры наиболее нагретой точки производятся для нагрузки продолжительностью, превышающей номинальное значение на несколько суток, то использование предусмотренной на этот период реальной кривой изменения температуры может быть более приемлемым.

В таком случае кривая изменения температуры охлаждающей среды должна быть представлена рядом отдельных значений, соответствующих интервалу времени, выбранному для определения изменения нагрузки. Для вычислений, проводимых на многие сутки или месяцы наперед, более удобно рассматривать температуру охлаждающей среды, представляемую двумя синусоидальными функциями первая характеризует годичное, вторая - суточное изменение температуры.

Расчет этих параметров производят по отдельной программе, приведенной в приложении D, введением четырех типичных значений температур для каждого месяца года.

Трансформатор, предназначенный для установки в помещении, подвергается дополнительному перегреву, значение которого составляет около половины значения превышения температуры воздуха в этом помещении.

Испытания показали, что дополнительный перегрев масла в верхних слоях изменяется под действием тока нагрузки приблизительно так же, как изменяется превышение температуры в верхних слоях. Для трансформаторов, установленных в металлическом или бетонном помещении, можно использовать формулу 1 , заменив , на:. Этот дополнительный перегрев рекомендуют определять во время испытаний, однако если результаты таких испытаний отсутствуют, допускается в качестве справочных использовать значения, приведенные в таблице 3.

Приблизительное значение дополнительного перегрева масла в верхних слоях получают делением значений, приведенных в таблице 3, на два. Таблица 3 - Поправки на температуру охлаждающей среды для трансформаторов внутренней установки. Сооружения с хорошей естественной вентиляцией, подземные камеры и подвальные этажи с принудительной вентиляцией.

Приведенные выше значения температурных поправок были рассчитаны для типичных режимов нагрузки подстанций с использованием характерных значений потерь в трансформаторах. Поправки получены в результате проведения серии испытаний с естественным и принудительным охлаждением в подземных камерах и закрытых подстанциях, а также в результате выборочных измерений, проводимых на подстанциях и в трансформаторных киосках.

Если испытание на нагрев было проведено на трансформаторе, установленном в киоске, как на едином собранном устройстве, внесение поправки на температуру внутри киоска не требуется.

Расчет коэффициентов нагрузки применительно к данному трансформатору при заданном графике нагрузки с учетом изменения температуры охлаждающей среды, заданного ограничения температуры наиболее нагретой точки и износа производится методом итерации, при выполнении которого необходимо использование компьютера. Логическая схема такого метода итерации, включающая основные принципы, установленные настоящим стандартом, показана на рисунке 3.

Подобный метод итерации используется при выборе проектировщиком номинальных значений параметров для новых трансформаторов, если известны режимы нагрузки и температура охлаждающей среды.

Программа должна быть составлена таким образом, чтобы потребитель смог ввести исходные тепловые характеристики трансформатора, график нагрузки на заданный период, характер изменения температуры охлаждающей среды на этот период, а также необходимые, по его мнению, специальные ограничения температуры и износа. Максимальную температуру наиболее нагретой точки и относительный износ рассчитывают для заданного графика нагрузки. Если максимальная температура не превышена и износ ниже принятого предельного значения, расчет повторяют при увеличенном значении множителя F, применяемого к каждой отдельной нагрузке К1 К2, Увеличение на множитель нагрузки и допуски на предельную температуру могут быть выбраны по-разному, в зависимости от типа трансформатора и параметров нагрузки.

Следует принимать такие допуски, чтобы избежать колебания результатов, обеспечивая при этом достаточную точность. При проверке программы с примерами, приведенными в таблицах 4 и 5, желательно получить более высокую точность, уменьшая эти допуски. При расчете может быть использован не только метод итерации, но и другие альтернативные методы, если они дают аналогичные результаты.

Для того, чтобы показать диапазон значений входных и выходных данных и дать возможность потребителю проверить свою программу, в таблицах 4 и 5 приведены примеры расчета. В первом примере таблица 4 приведен простой расчет нагрузки за одни сутки с постоянной температурой охлаждающей среды и простым графиком нагрузки.

Второй пример таблица 5 является расчетом нагрузки за целый год с тремя различными графиками нагрузки в течение года и температурой охлаждающей среды, представленной двойной синусоидальной функцией.

Рисунок 3 - Логическая схема программы машинного расчета коэффициента допустимой нагрузки. Таблица 4 - Данные для расчета нагрузки за одни сутки при постоянной эквивалентной температуре охлаждающей среды.